7/27/2019 Maths HL Formula Booklet
1/16
Published June 2012 International Baccalaureate Organization2012 5048
Mathematics HL andfurther mathematics HL
formula bookletFor use during the course and in theexaminations
First examinations 2014
Diploma Programme
7/27/2019 Maths HL Formula Booklet
2/16
7/27/2019 Maths HL Formula Booklet
3/16
Contents
Prior learning 2
Core 3
Topic 1: Algebra 3
Topic 2: Functions and equations 4
Topic 3: Circular functions and trigonometry 4
Topic 4: Vectors 5
Topic 5: Statistics and probability 6
Topic 6: Calculus 8
Options 10
Topic 7: Statistics and probability 10
Further mathematics HL topic 3
Topic 8: Sets, relations and groups 11
Further mathematics HL topic 4
Topic 9: Calculus 11
Further mathematics HL topic 5
Topic 10: Discrete mathematics 12
Further mathematics HL topic 6
Formulae for distributions 13
Topics 5.6, 5.7, 7.1, further mathematics HL topic 3.1
Discrete distributions 13
Continuous distributions 13
Further mathematics 14
Topic 1: Linear algebra 14
7/27/2019 Maths HL Formula Booklet
4/16
Formulae
Prior learning
Area of a parallelogram A b h , where b is the base, h is theheight
Area of a triangle 1( )
2A b h , where b is the base, h is the height
Area of a trapezium 1( )
2A a b h , where a and b are the parallel sides, h is theheight
Area of a circle 2A r , where r is the radius
Circumference of a circle 2C r , where r is the radius
Volume of a pyramid 1(area of base vertical height)
3V
Volume of a cuboid V l w h , where l is the length, w is thewidth, h is the height
Volume of a cylinder 2V r h , where r is the radius, h is theheight
Area of the curved surface of
a cylinder2A rh , where r is the radius, h is the height
Volume of a sphere34
3V r , where r is the radius
Volume of a cone21
3V r h , where r is the radius, h is the height
Distance between two
points1 1( , )x y and 2 2( , )x y
2 2
1 2 1 2( ) ( )d x x y y
Coordinates of the midpoint ofa line segment with endpoints
1 1( , )x y and 2 2( , )x y
1 2 1 2,2 2
x x y y
Solutions of a quadraticequation The solutions of
2 0ax bx c are2
4
2
b b acx
a
7/27/2019 Maths HL Formula Booklet
5/16
Core
Topic 1: Algebra
1.1 The nt term of an
arithmetic sequence1 ( 1)nu u n d
The sum ofn terms of anarithmetic sequence 1 1(2 ( 1) ) ( )22
n n
n nS u n d u u
The nt term of a
geometric sequence
1
1
n
nu u r
The sum ofn terms of a
finite geometric sequence
1 1( 1) (1 )
1 1
n n
n
u r u r
S r r , 1r
The sum of an infinitegeometric sequence
1
1
uS
r, 1r
1.2 Exponents and logarithms logxa
a b x b , where 0, 0, 1a b a
lnex x aa
loglog a
xx
aa x a
loglog
logc
b
c
aa
b
1.3 Combinations !
!( )!
n n
r r n r
Permutations !
( )!
nnP
r n r
Binomial theorem1
( ) 1
n n n n r r nn n
a b a a b a b br
1.5 Complex numbers i (cos isin ) e cisiz a b r r r
1.7 De Moivres theorem (cos isin ) (cos isin ) e cisn n n in nrr n n r r n
7/27/2019 Maths HL Formula Booklet
6/16
Topic 2: Functions and equations
2.5 Axis of symmetry of thegraph of a quadratic
function
2( ) axis of symmetry
2
bf x ax bx c x
a
2.6 Discriminant 2 4b ac
Topic 3: Circular functions and trigonometry
3.1 Length of an arc l r , where is the angle measured inradians, r is the radius
Area of a sector21
2
A r , where is the angle measured in radians, r is the
radius
3.2 Identities sintan
cos
1sec
cos
1cosec
sin
Pythagorean identities 2 2
2 2
2 2
cos sin 1
1 tan sec
1 cot csc
3.3 Compound angle identities sin( ) sin cos cos sinA B A B AB
cos( ) cos cos sin sinA B A B A B
tan tantan( )
1 tan tan
A BA B
A B
Double angle identities sin2 2sin cos
2 2 2 2cos2 cos sin 2cos 1 1 2sin
2
2tantan2
1 tan
7/27/2019 Maths HL Formula Booklet
7/16
3.7 Cosine rule2 2 2
2 cosc a b ab C ;2 2 2
cos2
a b cC
ab
Sine rule
sin sin sin
a b c
A B C
Area of a triangle 1sin
2A ab C
Topic 4: Vectors
4.1 Magnitude of a vector
2 2 21 2 3v v vv , where
1
2
3
v
v
v
v
Distance between two
points1 1 1( , , )x y z and
2 2 2( , , )x y z
2 2 2
1 2 1 2 1 2( ) ( ) ( )d x x y y z z
Coordinates of themidpoint of a line segment
with endpoints1 1 1( , , )x y z ,
2 2 2( , , )x y z
1 2 1 2 1 2, ,2 2 2
x x y y z z
4.2 Scalar product cosv w v w , where is the angle between v andw
1 1 2 2 3 3v w v w v wv w , where
1
2
3
v
v
v
v ,
1
2
3
w
w
w
w
Angle between twovectors
1 1 2 2 3 3cosv w v w v w
v w
4.3 Vector equation of a line = + r a b
Parametric form of theequation of a line
0 0 0, ,x x l y y m z z n
Cartesian equations of aline
0 0 0x x y y z z
l m n
7/27/2019 Maths HL Formula Booklet
8/16
4.5 Vector product2 3 3 2
3 1 1 3
1 2 2 1
v w v w
v w v w
v w v w
v w where
1
2
3
v
v
v
v ,
1
2
3
w
w
w
w
sinv w v w , where is the angle between v and w
Area of a triangle 1
2A v w where v and w form two sides of a triangle
4.6 Vector equation of a plane = +r a b + c
Equation of a plane(using the normal vector)
r n a n
Cartesian equation of aplane
ax by cz d
Topic 5: Statistics and probability
5.1 Population parametersLet
1
k
i
i
n f
Mean
1
k
i i
if x
n
Variance 2 2 2
2 21 1
k k
i i i i
i i
f x f x
n n
Standard deviation2
1
k
i i
i
f x
n
5.2 Probability of an event A ( )P( )
( )
n AA
n U
Complementary events P( ) P( ) 1A A
5.3 Combined events P( ) P( ) P( ) P( )A B A B A B
Mutually exclusive events P( ) P( ) P( )A B A B
7/27/2019 Maths HL Formula Booklet
9/16
5.4 Conditional probability P( )P
P( )
A BA B
B
Independent events P( ) P( ) P( )A B A B
Bayes theorem P( )P |P |
P( )P | P( )P |
B A BB A
B A B B A B
1 1 2 2 3 3
( ) ( )( | )
( ) ( | ) ( ) ( | ) ( ) ( | )
i i
i
P B P A BP B A
P B P A B P B P A B P B P A B
5.5 Expected value of adiscrete random variableX
E( ) P( )X x X x
Expected value of acontinuous random
variableX
E( ) ( )dX x f x x
Variance 22 2Var( ) E( ) E( ) E( )X X X X
Variance of a discreterandom variableX
2 2 2Var( ) ( ) P( ) P( )X x X x x X x
Variance of a continuous
random variableX
2 2 2Var( ) ( ) ( )d ( )dX x f x x x f x x
5.6 Binomial distribution
Mean
Variance
~ B( , ) P( ) (1 ) , 0,1, ,x n xn
X n p X x p p x nx
E( )X np
Var( ) (1 )X np p
Poisson distribution
Mean
Variance
e~ Po( ) P( ) , 0,1, 2,
!
x mm
X m X x xx
E( )X m
Var( )X m
5.7 Standardized normal
variablex
z
7/27/2019 Maths HL Formula Booklet
10/16
Topic 6: Calculus
6.1 Derivative of ( )f x
d ( ) ( )( ) ( ) lim
d h
y f x h f xy f x f x
x h
6.2 Derivative of nx 1( ) ( )n nf x x f x nx
Derivative of sinx ( ) sin ( ) cosf x x f x x
Derivative of cosx ( ) cos ( ) sinf x x f x x
Derivative of tanx 2( ) tan ( ) secf x x f x x
Derivative of ex ( ) e ( ) ex x
f x f x
Derivative of lnx 1( ) ln ( )f x x f x
x
Derivative of secx ( ) sec ( ) sec tanf x x f x x x
Derivative of cscx ( ) csc ( ) csc cotf x x f x x x
Derivative of cotx 2( ) cot ( ) cscf x x f x x
Derivative ofx
a ( ) ( ) (ln )x x
f x a f x a a
Derivative of loga x 1( ) log ( )ln
af x x f x
x a
Derivative of arcsinx
2
1( ) arcsin ( )
1f x x f x
x
Derivative of arccosx
2
1( ) arccos ( )
1f x x f x
x
Derivative of arctanx 2
1( ) arctan ( )
1f x x f x
x
Chain rule( )y g u , where
d d d( )
d d d
y y uu f x
x u x
Product rule d d d
d d d
y v uy uv u v
x x x
Quotient rule
2
d d
d d dd
u vv u
u y x xyv x v
7/27/2019 Maths HL Formula Booklet
11/16
6.4 Standard integrals 1d , 1
1
nn x
x x C nn
1
d lnx x Cx
sin d cosx x x C
cos d sinx x x C
e d ex xx C
1d
ln
x xa x a C
a
2 2
1 1d arctan
xx C
a x a a
2 2
1d arcsin ,
xx C x a
aa x
6.5 Area under a curve
Volume of revolution(rotation)
db
aA y x or d
b
aA x y
2 2 d or d
b b
a aV y x V x y
6.7 Integration by parts d dd d
d d
v uu x uv v x
x xor d du v uv v u
7/27/2019 Maths HL Formula Booklet
12/16
Options
Topic 7: Statistics and probabilityFurther mathematics HL topic3
7.1
(3.1)
Probability generatingfunction for a discreterandomvariableX
( ) ( ) ( )X x
x
G t E t P X x t
7.2
(3.2)
Linear combinations of twoindependent random
variables1 2,X X
1 1 2 2 1 1 2 2
2 2
1 1 2 2 1 1 2 2
E E E
Var Var Var
a X a X a X a X
a X a X a X a X
7.3
(3.3)
Sample statistics
Mean x
1
k
i i
i
f x
xn
Variance2
ns 2 2
2 21 1
( )k k
i i i i
i i
n
f x x f x
s xn n
Standard deviationn
s 2
1
( )k
i i
i
n
f x x
sn
Unbiased estimate of
population variance2
1ns
2 2
2 2 21 11
( )
1 1 1 1
k k
i i i i
i i
n n
f x x f xn n
s s xn n n n
7.5
(3.5)
Confidence intervals
Mean, with knownvariance x z n
Mean, with unknownvariance
1nsx tn
7.6
(3.6)
Test statistics
Mean, with knownvariance /
xz
n
Mean, with unknown
variance 1 /n
xt
s n
7/27/2019 Maths HL Formula Booklet
13/16
7.7
(3.7)
Sample product momentcorrelation coefficient
1
2 2 2 2
1 1
n
i i
i
n n
i ii i
x y nx y
r
x nx y n y
Test statistic for H0: = 0 2
2
1
nt r
r
Equation of regression lineofx ony
1
2 2
1
( )
n
i i
i
n
i
i
x y nx y
x x y y
y n y
Equation of regression lineofy onx
1
2 2
1
( )
n
i i
i
n
i
i
x y nx y
y y x x
x nx
Topic 8: Sets, relations and groupsFurther mathematics HL topic4
8.1
(4.1)
De Morgans laws ( )
( )
A B A B
A B A B
Topic 9: CalculusFurther mathematics HL topic 5
9.5
(5.5)
Eulers method1 ( , )n n n ny y h f x y ; 1n nx x h , where h isa constant
(step length)
Integrating factor for
( ) ( )y P x y Q x
( )d
eP x x
7/27/2019 Maths HL Formula Booklet
14/16
9.6
(5.6)
Maclaurin series 2( ) (0) (0) (0)
2!
xf x f x f f
Taylor series 2( )( ) ( ) ( ) ( ) ( ) ...2!
x af x f a x a f a f a
Taylor approximations
(with error term ( )nR x )( )( )
( ) ( ) ( ) ( ) ... ( ) ( )!
nn
n
x af x f a x a f a f a R x
n
Lagrange form ( 1)1( )( ) ( )
( 1)!
nn
n
f cR x x a
n, where c lies between a andx
Maclaurin series forspecial functions
2
e 1 ...
2!
x xx
2 3
ln(1 ) ...2 3
x xx x
3 5
sin ...3! 5!
x xx x
2 4
cos 1 ...2! 4!
x xx
3 5
arctan ...3 5
x xx x
Topic 10: Discrete mathematicsFurther mathematics HL topic 6
10.7
(6.7)
Eulers formula forconnected planar graphs
2v e f , where v is the number of vertices, e is the number
of edges,fis the number of faces
Planar, simple, connected
graphs
3 6e v for 3v
2 4e v if the graph has no triangles
7/27/2019 Maths HL Formula Booklet
15/16
Formulae for distributions
Topics 5.6, 5.7, 7.1, further mathematics HL topic 3.1
Discrete distributionsDistribution Notation Probability mass
functionMean Variance
Geometric ~ GeoX p 1xpq
for 1,2,...x
1
p
2
q
p
Negative binomial ~ NB ,X r p 1
1
r x rx
p qr
for , 1,...x r r
r
p
2
rq
p
Continuous distributionsDistribution Notation Probability
density functionMean Variance
Normal 2~ N ,X 2
1
21 e
2
x
2
7/27/2019 Maths HL Formula Booklet
16/16
Further mathematics
Topic 1: Linear algebra
1.2 Determinant of a 2 2
matrix deta b
ad bcc d
A A A
Inverse of a 2 2 matrix1 1 ,
det
a b d bad bc
c d c aA A
A
Determinant of a 3 3
matrix det
a b ce f d f d e
d e f a b ch k g k g h
g h k
A A
(PDF) Maths HL Formula Booklet - PDFSLIDE.NET (2023)
Top Articles
15 Strategies for Quickly Expanding Your Business
6 Data Quality Issues in Reporting and Best Practices to Overcome Them | Databox Blog
The best computer science careers in 2022
Document Management System Benefits, Features, and Tips
Insurance Aggregators – The Best Way Forward for Insurance Agents
Homeowners beware: this hidden problem could be making your house fall apart
Discovered true identity of decaying ship's hull in Plymouth
Latest Posts
Finding shortest paths with Graph Networks
Multistage Graph (Shortest Path) - GeeksforGeeks
Shortest path in a directed graph by Dijkstra’s algorithm - GeeksforGeeks
Solving the Shortest Path problem in Python
Climate Change | Cambridge University Press & Assessment
Article information
Author: Gregorio Kreiger
Last Updated: 01/04/2023
Views: 5809
Rating: 4.7 / 5 (77 voted)
Reviews: 92% of readers found this page helpful
Author information
Name: Gregorio Kreiger
Birthday: 1994-12-18
Address: 89212 Tracey Ramp, Sunside, MT 08453-0951
Phone: +9014805370218
Job: Customer Designer
Hobby: Mountain biking, Orienteering, Hiking, Sewing, Backpacking, Mushroom hunting, Backpacking
Introduction: My name is Gregorio Kreiger, I am a tender, brainy, enthusiastic, combative, agreeable, gentle, gentle person who loves writing and wants to share my knowledge and understanding with you.